APPENDIX D Statistical Analysis Of Simulation Results The statistical analyses were performed in this study to quantify levels of uncertainty associated with simulation results. Means and standard deviations of the difference between observed and simulated temperatures were computed for the entire simulation period and for each two-month period for the duration of the simulation (01/01/1990 - 12/31/1994). The results are given in Tables D-1 through D-9. An analysis of the regression of observed results on simulated results was also performed. In the regression analysis, the linear relationship is constrained to pass through the origin of the coordinates at (X=0, Y=0) as shown in Figures D-1 through D-9. The results of the regression are shown Table D-10. Certain statistics are also generated as part of the parameter estimation process. These include the theoretical and sample variance of the innovations process Figures D-10 through D-18 and the innovations process (Equation 12) (Figures D-19 through D-27). When reviewing these statistics it is important to keep in mind that the means and standard deviations of the difference between observed and simulated are based on state estimates using the model in the *prediction* mode. That is, the state estimates from the model do not depend on prior observations. The statistics generated by the parameter estimation process are a result of using the model in the *filtering* mode. This means that the innovations sequence, the difference between observed and the systems update prior to filtering, is a function of previous observations and state estimates. In addition, the parameter estimation process attempts to estimates the bias in the observations. Table D-1. Mean and standard deviation of the difference between observed and simulated temperatures at Wells Dam (Columbia River Mile 515.6) for the period 1990-1994. Observed data are from the total dissolved gas monitoring locations in the forebay of the dam at a depth of 15 feet. Dashes (---) indicate limited (N<10) data for computing statistics | Time Period | Mean Difference | Standard Deviation of Difference | |-------------------|-----------------|----------------------------------| | January-February | | | | March-April | -0.028 | 0.510 | | May-June | 0.035 | 0.802 | | July-August | -0.136 | 0.529 | | September-October | 0.494 | 0.488 | | November-December | | | | Entire Year | 0.009 | 0.677 | Table D-2. Mean and standard deviation of the difference between observed and simulated temperatures at Priest Rapids Dam (Columbia River Mile 397.1) for the period 1990-1994. . Observed data are from the total dissolved gas monitoring locations in the forebay of the dam at a depth of 15 feet. Dashes (---) indicate limited (N<10) data for computing statistics | Time Period | Mean Difference | Standard Deviation of
Difference | |-------------------|-----------------|-------------------------------------| | January-February | | | | March-April | 0.320 | 0.999 | | May-June | -0.623 | 0.895 | | July-August | -0.499 | 0.880 | | September-October | 0.855 | 0.433 | | November-December | | | | Entire Year | -0.277 | 1.012 | Table D-3. Mean and standard deviation of the difference between observed and simulated temperatures at McNary Dam (Columbia River Mile 292.0) for the period 1990-1994. . Observed data are from the total dissolved gas monitoring locations in the forebay of the dam at a depth of 15 feet. Dashes (---) indicate limited (N<10) data for computing statistics | Time Period | Mean Difference | Standard Deviation of Difference | |-------------------|-----------------|----------------------------------| | lanciani Fahmiani | | | | January-February | | | | March-April | 0.940 | 0.929 | | May-June | 0.749 | 1.194 | | July-August | 0.884 | 1.335 | | September-October | 1.653 | 1.027 | | November-December | | | | Entire Year | 0.983 | 1.236 | Table D-4. Mean and standard deviation of the difference between observed and simulated temperatures at John Day Dam (Columbia River Mile 215.6) for the period 1990-1994. Observed data are from the total dissolved gas monitoring locations in the forebay of the dam at a depth of 15 feet. Dashes (---) indicate limited (N<10) data for computing statistics | Time Period | Mean Difference | Standard Deviation of
Difference | |-------------------|-----------------|-------------------------------------| | Innuary Fahrung | 0.500 | 4.200 | | January-February | 0.580 | 1.309 | | March-April | 1.273 | 0.730 | | May-June | 0.283 | 0.924 | | July-August | 0.288 | 0.986 | | September-October | 0.9425 | 0.646 | | November-December | | | | Entire Year | 0.560 | 1.021 | Table D-5. Mean and standard deviation of the difference between observed and simulated temperatures at Bonneville Dam (Columbia River Mile 215.6) for the period 1990-1994. . Observed data are from the total dissolved gas monitoring locations in the forebay of the dam at a depth of 15 feet. Dashes (---) indicate limited (N<10) data for computing statistics | Time Period | Mean Difference | Standard Deviation of
Difference | |-------------------|-----------------|-------------------------------------| | January-February | | | | March-April | 0.909 | 1.002 | | May-June | 0.413 | 1.248 | | July-August | -0.382 | 1.423 | | September-October | 0.524 | 0.868 | | November-December | | | | Entire Year | 0.241 | 1.306 | Table D-6. Mean and standard deviation of the difference between observed and simulated temperatures at Bonneville Dam (Columbia River Mile 215.6) for the period 1990-1994. . Observed data are from the total dissolved gas monitoring locations in the forebay of the dam at a depth of 15 feet. Dashes (---) indicate limited (N<10) data for computing statistics | Time Period | Mean Difference | Standard Deviation of
Difference | |-------------------|-----------------|-------------------------------------| | January-February | | | | March-April | 0.909 | 1.002 | | May-June | 0.413 | 1.248 | | July-August | -0.382 | 1.423 | | September-October | 0.524 | 0.868 | | November-December | | | | Entire Year | 0.241 | 1.306 | Table D-7. Mean and standard deviation of the difference between observed and simulated temperatures at Lower Granite Dam (Snake River Mile 107.5) for the period 1990-1994. . Observed data are from the total dissolved gas monitoring locations in the forebay of the dam at a depth of 15 feet. Dashes (---) indicate limited (N<10) data for computing statistics | Time Period | Mean Difference | Standard Deviation of Difference | |-------------------|-----------------|----------------------------------| | | | Billiototice | | January-February | | | | March-April | 1.052 | 1.388 | | May-June | -0.040 | 1.363 | | July-August | 1.136 | 1.120 | | September-October | 0.409 | 1.076 | | November-December | -0.133 | 0.203 | | Entire Year | 0.588 | 1.320 | Table D-7. Mean and standard deviation of the difference between observed and simulated temperatures at Little Goose Dam (Snake River Mile 70.3) for the period 1990-1994. Observed data are from the total dissolved gas monitoring locations in the forebay of the dam at a depth of 15 feet. Dashes (---) indicate limited (N<10) data for computing statistics | Time Period | Mean Difference | Standard Deviation of | |-------------------|-----------------|-----------------------| | | | Difference | | | | | | January-February | | | | March-April | 1.086 | 1.144 | | May-June | -0.196 | 1.167 | | July-August | 0.131 | 1.532 | | September-October | -0.228 | 1.436 | | November-December | | | | Entire Year | 0.048 | 1.420 | Table D-8. Mean and standard deviation of the difference between observed and simulated temperatures at Lower Monumental Dam (Snake River Mile 41.6) for the period 1990-1994. . Observed data are from the total dissolved gas monitoring locations in the forebay of the dam at a depth of 15 feet. Dashes (---) indicate limited (N<10) data for computing statistics | Time Period | Mean Difference | Standard Deviation of Difference | |-------------------|-----------------|----------------------------------| | | | | | January-February | | | | March-April | 1.543 | 0.900 | | May-June | 0.027 | 0.884 | | July-August | -0.067 | 1.269 | | September-October | -0.036 | 0.933 | | November-December | | | | Entire Year | 0.124 | 1.187 | Table D-9. Mean and standard deviation of the difference between observed and simulated temperatures at Ice Harbor Dam (Columbia River Mile 9.7) for the period 1990-1994. . Observed data are from the total dissolved gas monitoring locations in the forebay of the dam at a depth of 15 feet. Dashes (---) indicate limited (N<10) data for computing statistics | Time Period | Mean Difference | Standard Deviation of
Difference | |-------------------|-----------------|-------------------------------------| | January-February | | | | March-April | 1.784 | 1.021 | | May-June | 0.155 | 0.888 | | July-August | 0.192 | 1.190 | | September-October | 0.625 | 1.093 | | November-December | | | | Entire Year | 0.407 | 1.202 | Table D-10. Slope of line and R² for regression of observed temperature data on simulated results in the Columbia and Snake rivers for the period 1990-1994. Regression was constrained to force the straight line to pass through the origin (X (simulated)=0, Y (observed)=0). | Measurement Site | Slope of Line | R ² | |----------------------|---------------|----------------| | | | | | Wells Dam | 0.995 | 0.973 | | Priest Rapids Dam | 0.999 | 0.940 | | McNary Dam | 1.004 | 0.929 | | John Day Dam | 0.995 | 0.976 | | Bonnevile Dam | 0.995 | 0.904 | | Lower Granite Dam | 1.005 | 0.931 | | Little Goose Dam | 0.997 | 0.907 | | Lower Monumental Dam | 0.992 | 0.923 | | Ice Harbor Dam | 0.998 | 0.929 | | | | |